Путешественник прибыл на остров, на котором живут лжецыЛ и правдолюбы П. Каждый Л, отвечая на вопрос «сколько?», называет число на 2 больше или на 2 ме

Путешественник прибыл на остров, на котором живут лжецы(Л) и правдолюбы (П). Каждый Л,отвечая на вопрос "сколько?", называет число на 2 больше или на 2 меньше,чем правильный ответ,а каждый П отвечает верно.Путешественник встретил двух жителей острова и спросил у каждого , сколько Л и П проживают на острове. Первый ответил : "если не считать меня,то 1001 (л) и 1002(п), а второй сказал : "если не считать меня,то 1000(л) и 999 (П). Сколько лжецов и правдолюбов на острове?

    Итого на о-ве: 1000(л) и 1000(п).

    По словам правдолюба, вместе с ним на о-ве 1001(л) и 1003(п).

    1) Допустим, что первый - лжец, а второй - правдолюб.

    По словам лжеца, включая его, на о-ве 1001(л) и 999(п). 

    Тогда, по словам правдолюба, на о-ве 1000(л) и 1000(п)=999(как он сказал)+1(он сам).

    Проверяем слова лжеца.

    Единственный вариант верный: он в обоих случаях назвал число на 2 меньшее, чем правильный ответ.

    2) На всякий случай, проверим второй вариант: первый - правдолюб, а второй - лжец.

    Вместе с ним - 1002 лжеца и 1002 правдолюба. 

  • Судя по ответам, один из них правдолюб, а другой лжец.

    Очевидно, что как бы мы не прибавляли и не убавляли 2, нужного ответа у нас не получится.
    Значит, верный ответ только один. На острове 1000 лжецов и 1000 правдолюбов.